

6-Pin DIP Random-Phase **Optoisolators Triac Driver Output** (400 Volts Peak)

The MOC3020 Series consists of gallium arsenide infrared emitting diodes, optically coupled to a silicon bilateral switch.

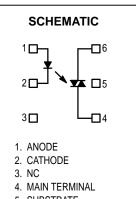
• To order devices that are tested and marked per VDE 0884 requirements, the suffix "V" must be included at end of part number. VDE 0884 is a test option. They are designed for applications requiring isolated triac triggering.

Recommended for 115/240 Vac(rms) Applications:

- Solenoid/Valve Controls
- Lamp Ballasts
- Interfacing Microprocessors to 115 Vac Peripherals
- Motor Controls

- Static ac Power Switch
- Solid State Relays
- Incandescent Lamp Dimmers

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted) 1**L** Rating Symbol Value Unit **INFRARED EMITTING DIODE Reverse Voltage** 3 Volts VR Forward Current — Continuous 60 I_{F} mA 3 🗖 Total Power Dissipation @ T_A = 25°C PD 100 mW Negligible Power in Triac Driver Derate above 25°C mW/°C 1.33 3. NC OUTPUT DRIVER Off-State Output Terminal Voltage 400 Volts VDRM Peak Repetitive Surge Current 1 **I**TSM A (PW = 1 ms, 120 pps)300 Total Power Dissipation @ T_A = 25°C PD mW mW/°C Derate above 25°C 4 TOTAL DEVICE Isolation Surge Voltage(1) VISO 7500 Vac(pk) (Peak ac Voltage, 60 Hz, 1 Second Duration) Total Power Dissipation @ T_A = 25°C PD 330 mW mW/°C Derate above 25°C 4.4 °C -40 to +100 Junction Temperature Range ТJ Ambient Operating Temperature Range -40 to +85 °C TA -40 to +150 °C Storage Temperature Range Tstg Soldering Temperature (10 s) 260 °C


ΤL

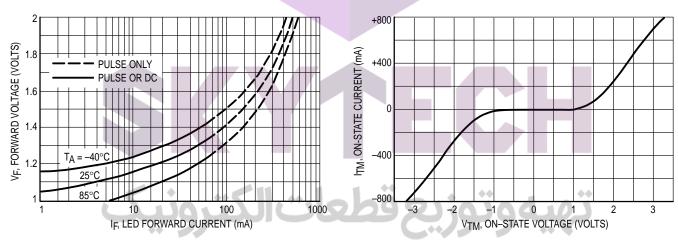
1. Isolation surge voltage, VISO, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

MOC3021 MOC3022 **MOC3023**

STANDARD THRU HOLE

- 5. SUBSTRATE
- DO NOT CONNECT
- 6. MAIN TERMINAL

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Мах	Unit
INPUT LED			170	mux	onit
Reverse Leakage Current (V _R = 3 V)	IR	_	0.05	100	μΑ
Forward Voltage (I _F = 10 mA)	VF	-	1.15	1.5	Volts
OUTPUT DETECTOR (I _F = 0 unless otherwise noted)					
Peak Blocking Current, Either Direction (Rated V _{DRM} ⁽¹⁾)	IDRM	_	10	100	nA
Peak On–State Voltage, Either Direction (I _{TM} = 100 mA Peak)	VTM	-	1.8	3	Volts
Critical Rate of Rise of Off-State Voltage (Figure 7, Note 2)	dv/dt	_	10	_	V/µs
COUPLED					
LED Trigger Current, Current Required to Latch Output (Main Terminal Voltage = 3 V ⁽³⁾) MOC3021 MOC3022 MOC3023	FT	 	8 	15 10 5	mA
Holding Current, Either Direction	Ч	-	100	_	μΑ

1. Test voltage must be applied within dv/dt rating.

2. This is static dv/dt. See Figure 7 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.

3. All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT}. Therefore, recommended operating I_F lies between max I_{FT} (15 mA for MOC3021, 10 mA for MOC3022, 5 mA for MOC3023) and absolute max I_F (60 mA).

TYPICAL ELECTRICAL CHARACTERISTICS

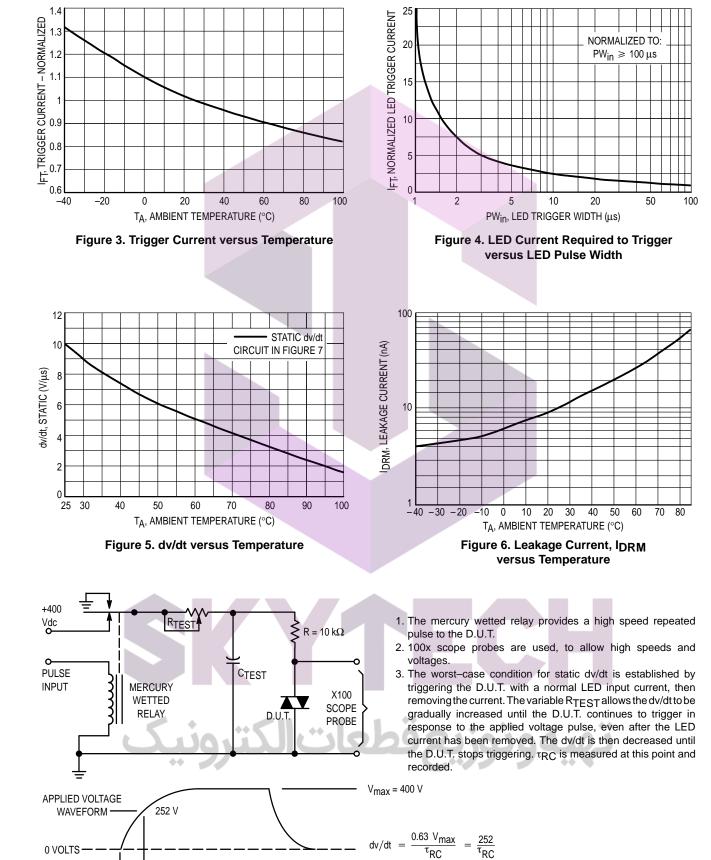
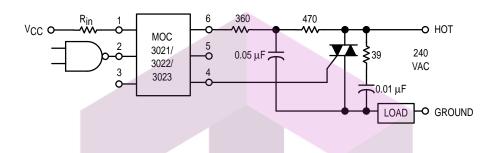

T_A = 25°C

Figure 1. LED Forward Voltage versus Forward Current

Figure 2. On–State Characteristics

Figure 7. Static dv/dt Test Circuit

TRC


SEMICONDUCTOR

FAIRCHILD

MOC3021, MOC3022, MOC3023

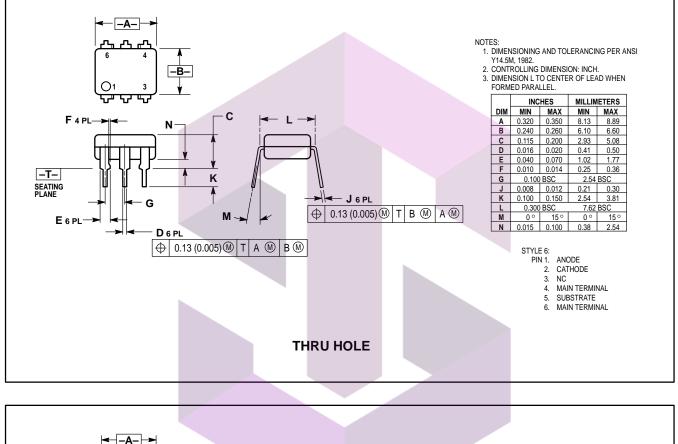
MOC3021, MOC3022, MOC3023

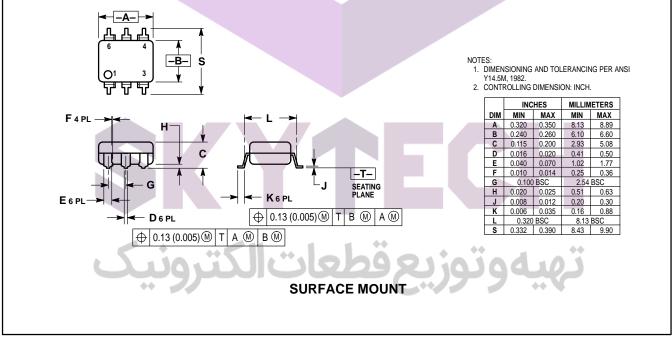
* This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only.

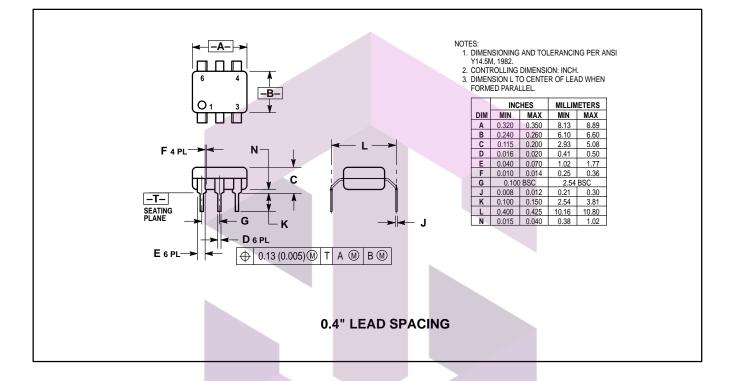
Additional information on the use of optically coupled triac drivers is available in Application Note AN–780A.

In this circuit the "hot" side of the line is switched and the load connected to the cold or ground side.

The 39 ohm resistor and 0.01 μF capacitor are for snubbing of the triac, and the 470 ohm resistor and 0.05 μF capacitor are for snubbing the coupler. These components may or may not be necessary depending upon the particular triac and load used.


Figure 8. Typical Application Circuit


<u>ەوتەزىع قطعات الكتەنىك</u>


MOC3021, MOC3022, MOC3023

PACKAGE DIMENSIONS

SKYTECH تهيهوتوزيع قطعات الكترونيك

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation